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Abstract

The advent of automation and communication in vehicles have provided new opportunities to mit-
igate traffic, increase productivity, and reduce emission. Despite these advantages, connected and
autonomous vehicles (CAVs) face deployment and adoption challenges arising from human drivers
lack of acceptance and willingness to give control to CAVs. Another roadblock in success of CAVs
is drivers’ situational awareness and mental workload in safely taking control back from CAVs when
required. To gain further insights into behavioral responses of drivers to automation, in this study a
stated preference laboratory experiment is designed employing Virtual Reality Immersive Environ-
ment (VIRE) driving simulator. Two sets of experiments are conducted: 1) give-away experiments,
where participants have full control of the vehicle with an option of giving control to CAV en-route
as desired, 2) take-away experiments, where participants are driven by CAV and have to take control
back from CAV due to sensor failure. Different traffic, weather and lighting (day, night) conditions
are tested. The option to multi-task is available when the participant is being driven by CAV. The
aim is to investigate under what conditions drivers are more willing to give control to the automated
vehicle and have higher situational awareness to safely take back control from automated vehicles.
The NASA-Task Load Index and Detection Response Task Index are used to evaluate participants
mental workload. The results obtained show that weather condition and congestion level play a sig-
nificant role in drivers’ willingness to give control to CAV. The results also show that multi-tasking
and congestion have the most impact on drivers’ situational awareness and mental workload in taking
back control safely from CAV.

Keywords: virtual immersive reality environment, laboratory experiments, human machine
interaction, connected and autonomous vehicles, mental workload, situational awareness

1. Introduction1

In recent years in order to make vehicles safer, reduce human drivers’ error, reduce congestion,2

and reduce GHG emissions, attention has been given to intelligent vehicles that support or overtake3

driving tasks. Self-driven connected and autonomous vehicles (CAVs) are the disruptive technological4

innovation that are expected to transform urban traffic, mobility patterns, land use, and economy. It5

is no longer a question of if CAV technology will be adopted, but when, in what form, at what rate,6

and through what kind of evolutionary path? Technologies like Tesla’s Autopilot are already in the7

market, and it is expected that by 2045 as much as 45% of the fleet could be CAV-based (Kuhr et al.,8
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2017). The current level of automation is at level 3 where, although steering and accelerating can be9

performed by the vehicle, the human is still in the loop and has to take control back when necessary10

or can decide not to give control at all. Therefore, it will be long before 100% level 5 CAVs be on the11

road. An important factor that has a major effect on the effectiveness of CAVs is drivers’ willingness12

to give control to the system or take it back safely when required. The associated challenge with13

taking control back safely is driver’s mental workload and situational awareness in the operational14

safety of automated driving. In the case of automation, drivers become passive observers as opposed15

to information processors resulting in a decrease of drivers’ situational awareness and an increase in16

accident rate (Hirose et al., 2015). In recent years there have been accidents involving CAV where17

drivers failed to take back control safely from the CAV when there was malfunction in CAV system.18

Online stated preference surveys (SP) have been widely used in the recent years to explore the19

factors influencing travelers’ acceptance of automated vehicles (Becker & Axhausen, 2017). However,20

online based SP surveys lack realism, especially when it comes to new and upcoming technologies.21

Driving simulators and field experiments have also been used to investigate situational awareness22

and mental workload of drivers when it comes to safely operating automated vehicles (Stapel et al.,23

2017). However, they also have their own limitations e.g. lack of interaction with environment and24

controlled environments. Moreover, field studies face the problem of replicability. As a result, virtual25

reality-based SP surveys have been gaining interest among researchers to study behavioural responses26

to CAVs, since it allows users to form a visual image of the innovative alternative as opposed to just27

purely mental image (Djavadian et al., 2019). To gain further insights into behavioral responses of28

drivers to automation, in this study a stated preference laboratory experiment is designed employing29

Virtual Reality Immersive Environment (VIRE) driving simulator (Farooq et al., 2018). The aim is30

to answer following research questions:31

32

1. Under what conditions drivers are more willing to give control to CAV en-route?33

2. Under what conditions drivers have higher situational awareness and ability to safely take back34

control from CAV?35

36

The remainder of this paper is organized as follows. In the background section, an overview of37

existing literature on drivers’ adaptation to CAVs is presented. The methodology section presents38

the design of our SP experiments employing VIRE driving simulator. Then, results and analysis are39

presented, followed by a summary and future work directions.40

2. Background41

Connected and autonomous vehicles have proven in simulation settings that they have the poten-42

tial of reducing negative impacts of transportation (congestion, emission, accidents). In their recent43

study, Farooq & Djavadian (2019) developed a dynamic distributed traffic management system using44

network of intelligent intersections and CAVs that has the potential of reducing travel time by 4045

% while increasing network throughput and reducing green house gas emission. However, as shown46

by Alfaseeh et al. (2019) the efficiency of such a system depends on the market penetration rate of47

CAVs, which is directly related to willingness of drivers to adapt to CAVs and give them control48

either partially or fully. Therefore, it is necessary to find insight into the adaptation of drivers to49

CAVs. Online and paper-based SP surveys have been deployed in the majority of experiments to50

test the factors affecting travelers’ acceptance of CAVs. Becker & Axhausen (2017) provide detailed51

review of recent studies who have used SP.52
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Djavadian et al. (2019) recently investigated willingness of drivers choosing CAV over human53

driven vehicles (HDV) while going from their origin to their destination. In their study, participants54

were able to experience being driven by CAV and driving themselves, choosing the one that they55

preferred the most. The focus of the study conducted by Djavadian et al. (2019) was on Level 556

automated vehicles, but as discussed earlier it will be long before we can expect 100% Level 5 vehicles57

on the road. As such, it is important to look into under what conditions drivers are willing to give58

control to vehicles, in the presence of partially automated vehicles.59

Aside from drivers’ willingness to adapt to CAVs and give them control, another major factor60

affecting the success of CAVs is the drivers’ ability to operate the intelligent vehicles and be able to61

take back control safely when necessary. This is of particular interest to automobile manufacturers62

in order to provide clear and on-time instructions to drivers when it is necessary for them to take63

back control from the vehicle.64

Many studies have investigated driver attentiveness and workload in the context of the transition65

from automated driving to manual. Stapel et al. (2019) evaluated workload using both automation-66

inexperienced and automation-experienced participants driving in a in a Tesla Model S on public67

highways in various traffic complexities. In the experiments, when using automation, automation-68

experienced drivers perceived a lower workload, while automation-inexperienced drivers perceived69

their workload to be similar to manual driving. It was found that drivers under-estimate the actual70

task load of attentive monitoring due to the detection-response task indicated an increase in cognitive71

load with automation.72

Hirose et al. (2015) investigated the driving characteristics of low-alert drivers after a change73

from automated driving to manual driving. The participant is driven by an AV at high speed along a74

highway and the driving mode changes from automated to manual, after which the participant must75

react to a vehicle turning in front of them. A significant difference was observed in both reaction76

time and brake pedal operation when the driver is in a low-alert state relative to a normal-alert state,77

resulting in unsuccessful collision avoidance in some instances and giving credence to the need for a78

prior and explicit warning of transition of control.79

Merat et al. (2014) designed a driving simulator to investigate drivers’ ability to resume manual80

control of an AV. The two situations considered were a transition of control at a regular, system-81

based interval and a transition of control based on the length of time drivers were looking away82

from the road. Driver attentiveness was monitored and estimated based on drivers’ eye movements.83

Results of the study indicate that drivers’ performance in stabilizing their vehicle was worse when84

the transition occurred as a result of the driver’s lack of attention to the road. In these cases, drivers’85

visual attention continued to be erratic for up to 40 seconds after the transition of control.86

Willemsen et al. (2015) explored the transition of control between vehicle and driver, imple-87

menting different strategies for the automated function to switch itself off in case of attentive or88

inattentive drivers and using a driving simulator to do so. Drivers’ were presented with strategies89

that display warnings of transition and confirmation prompts at varying distances from the manual90

driving task requested of the participant. In some situations, participants were distracted by a sec-91

ondary task. Differences between the tested conditions were small in both subjective and objective92

results, prompting repetition of the experiment with a larger population and a larger variance in93

experiment conditions.94

In contrast to the mentioned literature, this study utilizes virtual immersive reality driving simula-95

tor to investigate factors (i.e. traffic , weather, lighting, multi-tasking) that affect drivers’ willingness96

to give control to CAVs. In addition, this study looks at factors playing significant role on drivers’97

situational awareness when it comes to taking back control safely from CAVs when necessary . The98

main advantage of adapting virtual reality in our research is the ability to present and immerse the99
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participant in a wider variety of scenarios such as rainy conditions. As mentioned earlier, virtual100

reality environment experiments have been conducted successfully in the past (Djavadian et al.,101

2019; Farooq et al., 2018; Kalatian et al., 2019) and studies have shown that participants are able102

to develop realistic spatial knowledge in the virtual reality environment that is comparable to actual103

physical environments (O’Neill, 1992; Ruddle et al., 1997; Tlauka & Wilson, 1996).104

3. Methodology105

To analyze the drivers’ behaviour in giving and taking control, laboratory experiments are de-106

signed in virtual reality. This section presents methodology used to design the experiments and107

model travelers’ behaviours.108

3.1. Objectives109

In this study, VIRE driving simulator Farooq et al. (2018), pre-experiment questionnaire, weighted110

NASA Task Load (NASA-TLX) index (Hart, 2006) and Detection Response Task (DRT) index (NEN-111

ISO 17488, 2016) are used to investigate under what conditions drivers are willing to give full control112

to CAVs and under what conditions are they able to safely take back control from CAVs. The aim113

of the VIRE driving simulation is to help answer the following questions:114

1. What are the effects of traffic congestion (low, high), weather condition (clear, rainy), time of115

the day (day, night), and multi-tasking on willingness to give control to CAV and safely taking116

back control when necessary?117

2. What is the effect of the order of the experiments in the choice of participants to give control118

to AV or not?119

3. What is the effect of the order of the experiments on how well participants perform once they120

take back control from AVs?121

122

Whereas the pre-experiment questionnaire is used to answer the following questions:123

1. What are the effects of gender, age, driving experience, risk index, locus of control index and124

prior knowledge/experience of AV on drivers’ willingness to give control to CAVs?125

2. Will participants with different socio-demographic and personal behaviour have different ac-126

ceptance of AVs under different traffic conditions/scenarios?127

3. Will drivers who are familiar with AVs have more trust in AVs and as such, be less attentive128

when they are passenger and fail to take back control safely?129

130

Lastly, the NASA-TLX index and DTR index are used to measure mental workload and situational131

awareness of drivers and the impact on safely taking back control from CAVs.132
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3.2. Dependent & Independent Variables133

3.2.1. Dependent variables134

As discussed earlier, the aim of this study is twofold: 1) to investigate factors that affect willing-135

ness of drivers to give control to CAVs and 2) to investigate factors that affect the ability of drivers136

to safely take back control from CAVs. As such, there are two independent variables that are set to137

binary:138

1. Y1 : Yes for giving control to CAV and no otherwise,139

2. Y2 : Yes for safely taking back control from CAV, and no otherwise.140

3.2.2. Independent variables141

Table 1 presents the independent variables used in this study. One of the key independent142

variables used is the Locus of Control index (Rotter, 1966) which as shown by Djavadian et al.143

(2019) has significant impact on the willingness of drivers to give control to CAVs or not. According144

to Rotter (1966), people are divided into two categories: a) those who believe there are external145

forces out of their control affecting their lives and b) those who believe they have control over events146

in their lives. The first group has external locus of control whereas the second group has internal147

locus of control. The higher the locus of control index means that the person has higher external148

locus of control. Djavadian et al. (2019) showed in their study that drivers with higher index of149

control are less willing to give control to CAVs. In this study the order in which experiments are150

presented to participants is also taken into account. For example, a participant may first experience151

taking back control from the CAV and may not perform safely, and in the next experiment where152

the participant has the option of giving control to the CAV may not do so due to the previous bad153

experience. Likewise, it is possible that a participant first experience being a passenger in a CAV154

and then in the next experiment, has to take back control from the CAV. Since the participant155

already has experience being driven by CAV, they may perform differently than a participant who156

goes through that same experiment without having experienced riding in a CAV.157

Table 1: Independent Variables

User attributes Travel attributes
Age Congestion level
Gender Weather condition
Education Time of day (e.g. day, night)
Vision Multi-tasking
Employment
Driving experience
Risk index
Locus of control index
Prior knowledge/experience of CAVs
Order of experiments & previous choice
Mental work load
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3.3. Choice Model158

In this study, Binary Logit model is used to model willingness of drivers to give control to CAVs.159

Equation 1 presents the utility function for each condition.160

161

Uk,n = βT0,k + βTx,kXk,n + βTz,kZk,n + εx,k (1)

where:162

Uk,n: expected utility of option k ∈ K for participant n ∈ N . In the case of willingness to give163

control to CAVs the options are choosing to continue to drive manually or switch to CAV;164

Xk,n: set of attributes related to option k;165

Zk,n: set of participant n attributes, e.g. socio-economic variables;166

βTx,k, β
T
z,k: set of parameters corresponding to the attributes;167

εk,n: unobserved utility modeled as a Gumbel distribution.168

169

The probability of each participant n giving control to CAV depending on β is shown by Equation170

2. k = 1 represents giving control to CAV.171

P1,n|(β) =
1

1 + e−(βT
0,1+β

T
x,1X1,n+βT

z,1Z1,n)
(2)

3.4. Experiment Setup172

The laboratory experiment is divided into four sessions as shown below:173

3.4.1. Information session174

In the information session, the participants are provided with information about the experiment175

and are asked to fill out the pre-experiment questionnaire which consists of 4 sections as described176

below.177

A Socio-economic/Demographic Attributes and Driving Experiences: Collects par-178

ticipants’ age, gender, occupation, education level and income level. In addition, it collects179

information regarding real-life driving experiences in terms of years of experience.180

B Personality Attributes: Collects participants’ attitudes toward adventure and discovery181

through risk index (Khattak et al., 1995). A risk index is estimated for each subject, based182

on a scoring system. Alternative answers for each question are given a score from 0 to 4 in an183

ascending order; starting with 0 for option (i). The risk index, for each subject, is estimated to184

be the sum of scores of all questions. High risk index indicates a risk-seeking type of personality.185

Similar test was also used by Talaat (2008).186

C Locus of Control: Collects subjects’ internal versus external control reinforcement and187

provides information on personal perception of self-efficacy and control of a situation. The test188

is developed by Rotter (1966). Scores range from 0 to 13. A low score indicates an internal189

control while a high score indicates external control.190
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D Technology based Indicators: Collects information regarding participants familiarity with191

the concept of self-driving cars and factors affecting their choice of buying one in the future.192

In addition, it collects information regarding participants prior experience driving self-driving193

cars or being driven by one.194

3.4.2. Learning session195

The second session is the learning session where participants are familiarized with driving in the196

virtual reality environment. In addition the aim of this session was to reduce effect of virtual reality197

novelty on the choices of the participants.198

3.4.3. Actual experiment199

The actual experiment is conducted in the VIRE driving simulator. Every participant is asked200

to try 4 experiments, each lasting roughly 5 minutes. The experiments fall into two main categories:201

giving control to a CAV and taking back control from a CAV. For each category, different traffic202

conditions, weather conditions, lighting conditions (e.g. day, night) and multi-tasking options are203

tested. For both categories, users either drive or are driven along a 2km stretch of a multi-lane204

highway as shown in Figure 1.205

1 Giving control to CAV: For this part of the experiment, the participants are asked to drive206

207

208

209

210

211

212

213

214

for approximately 5 minutes along a virtual highway. At any point, they are able to switch 
from manual driving to automated driving. To be able to switch to automated driving, the 
participants are asked to change lane to a dedicated CAV lane. The experiments vary in terms of 
traffic conditions, weather condition, lighting (day, night) and multi-tasking option. A pilot 
study was first conducted with participants not having the option of taking back control after 
they switched to autopilot, however after analysing participants’ feedback it became apparent 
that option of taking back control played an important role in their decision to switch to 
autopilot. Hence, for the actual experiment participants are given the chance of switching back 
to manual after they switched to autopilot.215

2 Taking control back from CAV: CAV systems contain a multitude of sensors that process216

collected data in order to make operational decisions and many of these sensors have limita-217

tions. For example, data collected by LIDAR can be distorted by falling rain and snow, while218

night time and limited visibility conditions can affect cameras (Kuhr et al., 2017). With this in219

mind, it is realistic to expect scenarios in which an CAV requests that the driver take control220

due to sensor disruption in safe functionality of the CAV. How situationally aware they are221

will affect their performance. For this part of the experiment, participants are driven by the222

CAV along a stretch of highway. At 1km from the start, the participant is prompted to take223

over control due to sensor failure or bad weather conditions. An auditory and visual warning224

is presented to the participant to bring back their focus on the road. Simultaneously, they225

approach an accident blocking their lane located approximately 200m after the initial warning226

is triggered. The warning is presented to allow participants enough time to either safely stop227

behind the accident or change lane and pass the accident. In order for the participant to take228

back the control from the CAV, they must pull a trigger found behind the steering wheel.229

Figure 1 presents the layout of this scenario. These experiments also vary in terms of traffic230

conditions, weather condition, lighting (day, night) and multi-tasking option.231

232
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Figure 1: Taking control experiment setup

As shown in Figure 2 in total there are 32 scenarios (8 scenario per control type) and out233

of these 32, we randomly assign 4 scenarios to each participant in such a way that all scenarios are234

repeated an equal number of times.

Figure 2: Scenarios.

235

Table 2 presents a description of each scenario, giving control to CAV (1-16), taking control236

back from CAV (17-32). In the label column: C (clear), R (rainy), D (day), N (night), H (high237

congestion), L (low congestion) and M (multi-tasking). If M is not present in the label then it means238

that multi-tasking is not available.239

3.4.4. De-briefing240

At the end of each experiment, participants are asked to fill out the NASA-TLX questionnaire241

rating their mental work load for the experiment they just performed. The NASA-TLX index (Hart,242
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Table 2: Scenarios

Weather Time Multi-Tasking Congestion
Scenarios Label Clear Rainy Day Night Yes No High Low

1,17 CDMH x x x x
2,18 CDH x x x x
3,19 CNMH x x x x
4,20 CNH x x x x
5,21 CDML x x x x
6,22 CDL x x x x
7,23 CNML x x x x
8,24 CNL x x x x
9,25 RDMH x x x x
10,26 RDH x x x x
11.27 RNMH x x x x
12,28 RNH x x x x
13,29 RDML x x x x
14,30 RDL x x x x
15,31 RNML x x x x
16,32 RNL x x x x

2006) is commonly used in aviation and automotive research to subjectively measure individual’s243

mental workload on six dimensions: mental demand, temporal demand, physical demand, perfor-244

mance, effort and frustration. Stapel et al. (2019) also used the NASA-TLX index to measure mental245

workload of participants in interaction with AV. The NASA-TLX allows participants to score the246

relevance of each of these items, reducing variability between participants and task contexts. As247

stated by Miller (2001), the NASA-TLX is more reliable than physiological measures. Aside from248

using NASA-TLX to measure mental workload of participants subjectively, the DRT index is also249

used to measure cognitive load (NEN-ISO 17488, 2016) objectively. DRT measures the delay between250

stimulus and response. In this case the stimulus is the auditory and visual warning and response is251

pulling the trigger behind the steering wheel. We call this delay reaction time from this point on.252

In the case of giving control to CAVs, participants are asked to explain what affected their choice.253

At the end of laboratory session, a short interview is conducted with the participants to receive their254

feedback regarding the experiment itself.255

3.5. Virtual Immersive Reality Environment256

The multi-lane stretch of highway was created in the open-source gaming engine Unity which257

VIRE (Farooq et al., 2018) is based on. To allow participants to drive in the virtual environment,258

VIRE is modified to include driving hardware such as a motion simulator, steering wheel and ac-259

celeration and braking pedals. VIRE is also modified such that it provides participants the option260

of fully giving control to AV en-route to their destination, allowing us to explore under what condi-261

tions (e.g. traffic condition, weather, time of day) users are more willing to give up control to AV.262

In addition, VIRE is further modified such a way that while being driven to their destinations by263

CAV participants are able to take over control from CAV in order to investigate their situational264

awareness. To investigate the effect of multi-tasking on the choices of drivers and their situational265

awareness, the option to multi-task is also introduced such that the participant riding CAV can read266

a virtual newspaper or play a maze game on a virtual mobile phone. Moreover, different traffic267
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conditions (low, high), different weather conditions (clear, rainy) and different lighting (day, night)268

are added to VIRE to measure their impact on the choices of drivers in giving control to CAVs and269

taking control back safely. During experiments, the following hardware was used:270

. Oculus Rift with motion and touch sensors271

. Thrustmaster T150 Force Feedback Racing Wheel and pedals,272

. Intel Core i7-8700 CPU,273

. DOFReality Consumer H3 Platform,274

. NVIDIA GeForce RTX 2080275

276

Figure 3 presents the snapshots of the virtual reality setup for the two travel options. Figure 3a is277

the snapshot of taking control away from CAV scenario where as Figure 3b is the snapshot of giving278

control to CAV and multi-tasking scenario. Figure 3a presents sunny weather conditions where as279

Figure 3d presents rainy day scenario.280

3.6. Results & Discussion281

This section provides results and analysis of the pilot study tested with graduated students and282

employees from Ryerson University and University of Toronto. The following information is collected283

from the laboratory experiment:284

285

Data that collected from the pre-experiment questionnaire286

• socio-demographic characteristics (e.g. age, gender, education, etc. )287

• driving experience288

• risk index289

• locus of control index290

• knowledge/experience of CAV/AVs291

Data collected from the VR simulator for each scenario292

• participant’s choice (switching to CAV or not)293

• time of switching to CAV from manual driving294

• reaction time to visual or auditory trigger295

• force on the brake pedal after they take back control296

• speed before and after taking cover297

• performance after taking back control (safe stop/lane change or not?)298

• distance to the object at stop position299
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Figure 3: Participant in VIRE driving simulator.

• time to full stop/ lane change300

• head position before the occurrence of the incident301

Data collected from the post-experiment questionnaire302

• workload from NASA-TLX303

• reason behind participants choices304

3.7. Pre-experiment Questionnaire305

3.7.1. Socio-demographic characteristics of participants306

A brief description of our participants is presented in Table 3. As can be seen from Table 3 there307

is a heterogeneity among participants.308
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Table 3: Socio-demographic characteristics of the participants

Number of Participants, by Age (years)
Characteristics 18-24 25-29 30-39 40-49 50-59 60+ Total
All Partici-
pants

27 15 15 4 2 2 65

Gender
Female 7 5 8 2 1 2 25(38%)
Male 20 10 7 2 1 0 40(62%)
Occupation
Student 25 13 6 0 0 0 44(68%)
Employee 2 2 9 4 2 2 21(32%)
Education
Bachelor 3 2 2 1 0 2 10(15%)
Masters 2 9 3 0 1 0 15(23%)
Doctorate 0 3 6 3 1 0 13(20%)
Uni/College 21 1 4 0 0 0 26(40%)
Highschool 1 0 0 0 0 0 1(2%)
Driving expe-
rience (years)
Not at all 3 0 0 0 0 0 3(5%)
< 2 8 1 1 0 0 0 10(15%)
2-5 11 2 1 0 0 0 14(22%)
5-10 5 7 4 1 0 0 17(26%)
> 10 0 5 9 3 2 2 21(32%)

3.7.2. Perception towards AV/CAV309

As part of pre-experiment questionnaire, participants were asked questions regarding their prior310

knowledge of and experience with AV/CAVs, and as shown in Table 4, 90 % of the participants311

were familiar with the concept of AV while 4 % of them had experience riding a AV/CAV shuttle at312

a technology fair. Aside from their knowledge of AV/CAVs, participants were asked which factors313

affect their choice of buying AV/CAV positively and negatively. Figure 4 presents factors play an314

important role in their willingness to purchase/ride an AV/CAV. As can be seen from Figure 4a,315

the three main factors negatively affecting participants willingness to buy an AV/CAV in descending316

order are concerns about safety & equipment failure, hacking, and giving full control to AV/CAV.317

From Figure 4b, it can be seen that participants would purchase AV/CAV because of higher safety,318

less congestion, and less time spent on finding a parking space. As shown by Figure 4c, participants319

are more willing to give ride (give control to) AV/CAV mostly in heavy congestion, on highways,320

and on unfamiliar networks.321

Table 4: Participants’ prior knowledge/ experience of AV/CAV

Results
Technology based indicators % Yes % No
Prior familiarity with the concept of AV 90.00 10.00
Prior familiarity with concept of CAV 60.00 40.00
Experienced being driven by an AV 4.00 96.00
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3.8. VIRE Driving Simulator Results322

Figure 5a shows the percentage of times participants were willing to give control to CAV and323

Figure 5b presents the percentage of times participants were able to safely take back control from324

CAV. Table 5 provides summary of Figure 5. Looking at Figure 5a and Table 5 it can be seen that325

participants 12.77 % of times were more willing to give control to CAV en-route when multi-tasking326

option was available as opposed to when the option wasn’t available. This results is inline with the327

results of questionnaire and the results of VIRE experiment conducted by Djavadian et al. (2019).328

On the other hand it can be observed from both Figure 5b and Table 5 that multi-tasking had329

significant negative impact on participants’ ability to safely take control back from CAV when it330

was necessary to do so. On average participants failed to safely take back control from CAV 35.94%331

of times more more when multi-tasking was available as opposed to when it wasn’t available. The332

reason for this substantial drop in participants ability to take back control when multi-tasking was333

able was due to the fact that they were distracted hence it took them longer time to react and take334

back control, this will be discussed in more details in the next section. In fact, recently there was an335

accident involving Tesla autopilot where the driver was distracted playing a game on his phone and336

failed to safely take back control of the car when he was prompted (News, 2020).337

Looking at Figure 5a and Table 5 it can be seen that participants 11.57% of the times were more338

willing to give control to CAV when the sky was clear as opposed to when it was rainy. Based on339

the results of the de-briefing questionnaire, poor visibility in the rain was the main contributor to340

this phenomenon. In addition, on the de-briefing questionnaire participants mentioned that they341

enjoyed giving control to CAV when sky was clear because they could enjoy the scenery. When it342

came to taking back control safely from CAV, surprisingly participants were 8.40 % less successful343

under clear sky. This might be due to the fact that when sky was clear they were less vigilant. As344

reported by participants in de-briefing questionnaire even when multi-tasking was available when it345

was rainy and it was night time, they preferred to keep their eyes on the road.346

Aside from multi-tasking option and weather condition, traffic condition as shown in Figure 5a347

and Table 5 also played an important role on the choices of participant in giving control to CAV348

en-route. It can be seen that under low traffic congestion participants gave control to CAV 10.83349

% of times more in contrast to when the congestion level was high. As discussed on the de-briefing350

questionnaire participants were more willing to switch to CAV when traffic was low because they351

liked being driven on an open road and enjoying the scenery. It can be seen that observed results352

from VIRE pre-experiment questionnaire (Figure 4c where participants mentioned that they are more353

willing to give control to CAV when it is congested, this shows the difference between having visual354

image (VIRE) as opposed to just mental image (online SP). There were still some participants who355

gave control to CAV when there was high congestion because it reduced the hassle of stop-and-go for356

them. It should be noted that in this study the CAV was only traveling on single lane with no lane357

changing and taking over capability, as such when there was congestion the CAV would get stuck358

behind the leading vehicle, and this was one reason that participants didn’t enjoy being driven by359

CAV for too long. It was observed that participants would put the car on auto-pilot and when there360

was congestion they would take control back switch lane, overtake the leading car and then would361

switch back to auto-pilot. It could be possible that in the future when CAVs have the capability of362

switching lane and taking over other vehicles, drivers would be willing to give control to CAV even363

when there is high congestion level.364

It is worth mentioning that traffic condition as shown in Figure 5b and Table 5 had a very365

minuscule effect on the performance of participants when it came to safely taking control back from366

CAV. The reason for the aforementioned phenomenon is that ability of drivers to safely take back367

control depends highly on factors affecting their reaction time and their visibility such as multi-368
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Figure 4: Factors affecting willingness to buy and ride AV/CAV
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tasking, weather condition and time of the day. When it was night time, as observable from Figure 5369

and Table 5, participants were 5.50% of the times more eager to switch to auto-pilot and give control370

to CAV but they were 8.51 % times less successful to take control back successful at night due to371

visibility.372

Before the start of this experiment a pilot study was conducted with 20 participants where they373

mentioned that they would have given control to CAV more often if the trip was longer and if they374

had the option of taking back the control after switching to CAV. The experiments were adjusted375

accordingly and the results showed that aside from weather condition, congestion level, time of the376

day and option of multi-tasking , factors such as trip length and ability to take back control when377

desired played important role on choices of participants.378

In this study as discussed in the methodology section, 4 experiments were randomly assigned379

to each participants and the effect of previous scenarios were also investigated on the choices of380

the participants. The results showed that order of experiments to some extend had affected the381

choices of participants, for example if a participant in their first scenario was unsuccessful to take382

back control safely from CAV, in their second scenario they he/she prevented themselves from giving383

control to CAV. On the other hand a positive take away experience resulted in higher willingness384

to switch to auto-pilot next time that they had the chance. This shows the effect of experience on385

the choices of drivers and this is something that I can hardly be measured using traditional online386

or paper based SP. Similarly, results showed that experiment orders in the case of take-away control387

from CAV also played a significant role on the performance of the participants. Those participants388

who went through two or more take-away scenarios their attentiveness and performance improved389

in subsequent experiments. For example, those who forgot to pull the trigger behind the steering390

wheel remembered to pull it in subsequent experiments. This shows once again the importance of391

using virtual reality not only to test the behaviour of drivers with respect to AV/CAV but also as392

a learning tool since in reality it is not possible to replicate accidents repeatedly in a safe manner.393

Also, repetition improved vigilance of the participant, once they were aware that auto-pilot can fail394

at times, they paid closer attention to the road, increasing their situational awareness and reducing395

their reaction time.396

An interesting observation from Figure 5 is that scenarios that participants were more willing to397

give control to CAV where the same scenarios that they were less successful to take back control398

safely when necessary. This should be taken into consideration when developing policy and designing399

CAVs.400

Table 5: Factors affecting drivers’ willingness to give control to and take away control from CAVs

% differences
Variables Giving Control Safely taking control back

Multi-tasking vs. No multi-tasking 12.77 -35.94
Clear Sky vs. Rainy 11.57 -8.40

Low vs. High congestion 10.83 -0.60
Night vs. Day 5.15 -8.51

3.9. Mental Workload401

Figure 6 presents the breakdown of the composition of weighted mental workload score. It402

should be noted that participants were asked to rank the mental workload from the moment they403
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(a) Giving control to CAV (b) Taking control back from CAV

Figure 5: % of times a) Giving control to CAV , b) Safely taking control back from CAV

received the sensor failure warning and prompted to take back control till the moment they safely404

passed the accident and finished traveling the highway. The overall mental workload calculated405

using NASA-TLX questionnaire was 50.60 (scale 0-100). As can be seen from Figure 6, temporal406

demand, frustration and mental demand contributed the most to the overall workload and as a407

result to the performance of the participants in taking back the control from CAV and safely passing408

the accident. Temporal demand is associated with time pressure for performing a task, and mental409

demand is associated with amount of thinking required to perform a task successfully and frustration410

is the amount of stress participant felt in doing the task.411

Figure 7 presents average mental workload and reaction time for each individual scenario whereas412

Table 6 shows statistical summary for mental workload and reaction time. The average reaction-413

time was 4.04 seconds (the delay between when warning was presented to the participant and when414

the participant pulled the trigger to switch to manual control). The lowest reaction-time was 1.83415

seconds associated with scenario CDL (Figure 7b due to the fact that option of multi-tasking was416

not available therefore participants were paying closer attention to the road. In addition it was417

day time and clear sky as such participants were more vigilant. Not only scenario CDL had lowest418

reaction time but it also had the least overall mental workload (Figure 7a associated with it for the419

aforementioned reasons. Second and third lowest reaction times (Figure 7b) were associated with420

scenarios RNL and RNH for the same reason that multi-tasking was not available and participants421

were focusing on the road. However, from Figure 7a it can be noticed that although these two422

scenarios had low reaction time, they had high overall mental workload this is due the fact that423

it was rainy and night time so participants had lower visibility and found the task stressful even424

though they were paying more attention to the road. The discrepancy between reaction time and425

overall mental workload level shows the difference between how subjectively participants rated their426

mental workload and how it was objectively measured using DRT (reaction time). There is clearly427

disassociation between them. This seems to be the general trend for other scenarios as well, the ones428

with multi-tasking available had higher reaction time than the ones that didn’t have multi-tasking429

option available .430

3.10. Binary Logit Model Results431

The initial results of the binary Logit model estimation based on the data gathered from the432

pilot study are presented in this section. The parameter values are not finalized, but provide us with433
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Figure 6: Composition of weighted mental workload score.

(a) Mental workload (NASA-TLX) (b) Reaction time (DRT)

Figure 7: a) Mental workload vs. b) reaction time

Table 6: Descriptive statistics for reaction time & mental workload

Stats. Reaction time (sec) Mental workload (out of 100)
Mean 4.04 50.93

Standard deviation 2.09 19.78
Minimum 1.83 9.33
Maximum 7.50 92.33

an idea of what variables had the most impact on the choices of participants when it came to the434

preference of giving control to CAV en-route.435
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3.10.1. Give-away experiment436

Table 7 presents the results of binary Logit model for the give-away experiments. As can be seen,437

the two main factors were heavy congestion when sky was clear and rain. With respect to rain, if the438

weather condition was rainy the variable was 1 and otherwise 0. As discussed before and as shown439

in Figure 5a, more participants gave control to CAV en-route under rainy weather condition which440

explains the positive sign of rain variable. These results are in-line with the de-briefing questionnaire441

where majority of participants noted that they were more inclined to give control to CAV under442

bad weather condition because of poor visibility. In regard to the variable clearsky-heavycongestion,443

when the sky was clear and the traffic congestion was heavy the variable was 1 and 0 otherwise.444

As can be seen from Table 7 and Figure 5a , the participants were less willing to give control to445

CAV when the weather condition was good, unless there was a heavy congestion. This explains the446

positive sign of the variable clearsky-heavycongestion. On the de-briefing questionnaire participants447

reported that when it was day light and light traffic condition they enjoyed driving but in heavy448

congestion they would rather give away control to CAV due to stop & go nature of traffic.449

Table 7: Preliminary Binary Logit Model estimation results

Variables Estimate t-stat
ClearSky-HeavyCongestion (1,0) 1.40 2.10
Rain (1,0) 1.10 1.71

# of Observations 36
# of parameters tested 2
Likelihood ratio test 8.401
Adjusted Rho-square 0.088

4. Concluding Discussion450

In this study, we designed and conducted a stated preference experiment employing virtual im-451

mersive reality environment simulator to investigate the factors that affect the willingness of drivers452

to give control to CAV en-route and similarly the factors that affect their mental workload and453

situational awareness when it comes to taking control safely back from CAV when required.454

This study was divided into four sections: pre-experiment questionnaire, learning session, vir-455

tual reality experiment and de-briefing questionnaire which included NASA-TLX questions to eval-456

uate participants mental workload. The pre-experiment questionnaire was used to collect socio-457

demographic characteristics of participants and their familiarity and perception of CAV. The results458

obtained showed that almost all the participants were familiar to some extend with the concept of459

CAV. The fear of equipment failure, liability, and giving full control were reported as three main460

factors negatively affecting their decision of buying CAV in the future. With the same token, they461

reported that in general they think CAV will make driving safer, less congested and reduce the need462

for finding parking space. Based on the results of the questionnaire, participants were more willing463

to give control to CAV under heavy traffic congestion, while driving on highways and while driving464

on unfamiliar networks. The purpose of the learning session was to familiarized participants with465

driving in virtual reality and at the same time reduce the effect of VIRE novelty on the choices of466

the participants.467

18



Two different sets of experiments were implemented in VIRE. In the first set of experiments,468

participants were asked to drive on a 2km stretch of multi-lane highway with the option of giving469

control to CAV anytime en-route (taking control back when desired). In the second set of exper-470

iments, participants were being driven on the same stretch of highway by CAV, however at some471

point en-route due to sensor failure they were asked to take back control and safely pass the acci-472

dent ahead. Auditory and visual warnings were used to bring back the focus of the participants to473

driving. Different weather, traffic and lighting conditions were tested for both set of experiments.474

While being driven by CAV, participants were also provided the option of multi-tasking (i.e. playing475

game on the smartphone). The results from the VIRE experiment contradicted with the ones from476

the pre-experiment questionnaire in the sense that VIRE results showed that participants were more477

willing to give control to CAV en-route when the congestion was low as opposed to when it was478

highly congested (pre-experiment results). The aforementioned discrepancy shows the value of hav-479

ing visual image and immersive experience as opposed to just mental image provided by traditional480

SP surveys. Based on participants’ feedback on the de-briefing questionnaire, they enjoyed giving481

control to CAV when it was low congestion because they liked being driven on an open road instead482

of being stuck behind traffic. Those who gave control when congestion level was high mentioned that483

they did it because switching to CAV took away the hassle of stop and go for them.484

The results from the VIRE experiment also showed that bad weather conditions and poor visibility485

played an important role on the decision of participants to give control to CAV. Participants were486

less inclined to give control to CAV when it was rainy, mentioning that they didn’t trust CAV. In line487

with the study conducted by Djavadian et al. (2019), it was shown in this study that multi-tasking488

also played a significant role in giving control en-route, with participants switching to auto-pilot 35%489

of the times more when multi-tasking option was available. Although it is worth mentioning that490

some participants they refrained themselves from using multi-tasking when it was rainy , citing that491

they preferred instead to keep their eyes on the road.492

In the case of taking back control from CAV, the average mental workload calculated using493

NASA-TLX index was 50.60 (scale 0-100) with temporal demand, mental demand and frustration494

having higher weights. Using detection response task technique, in this case reaction time to the495

auditory and visual warning the average reaction time was 4.04 seconds. The reaction time was496

lower and success rate was higher under scenarios where congestion level was low and multi-tasking497

was not available suggesting that multi-tasking and congestion level playing major role on drivers’498

situational awareness. There was the discrepancy between the subjective workload (NASA-TLX)499

results and the objective one (DRT). In general scenarios that had lowest reaction time they had500

higher workload ( rainy night and no multi-tasking)501

There are several directions that can be taken in future studies. First and foremost, the laboratory502

experiment will be conducted with larger and more heterogeneous sample size. The results from de-503

briefing questionnaire showed that participants were more willing to give control to CAV en-route504

if the trip was longer and if they had the option of taking control back whenever they wanted. In505

general, the participants were split with regards to their decision to trust CAV at night and rain.506

In the future study, we will look into extending trip length and providing the option of taking back507

control once the control is giving to CAV. Although auditory and visual warnings were provided to508

participants, some participants were not able to successfully take over the control from CAV because509

they forgot to pull the trigger to assume control and instead they intuitively pressed the brake pedal.510

They noted that aside from warnings, they would prefer to receive clear instructions as what to511

do when they have to take back control. In future studies, the effect of giving clear directions will512

be examined. In this study, NASA-TLX was used to subjectively measure mental workload and513

situational awareness. In the future, Galvanic Skin Response (GSR) sensors will be used to measure514
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emotional arousal of the participants objectively when they have to take control from CAV.515

The project results will be of interest to car manufacturers, to design CAVs in a way that will516

have maximum safety and driver acceptance, increasing market share. Also, the results will be of517

benefit to traffic information providers, traffic management centers, city planners, and municipalities,518

allowing them to target the right audience and apply traffic management strategies using CAVs in519

situations that will result in higher acceptance and efficient use of transportation system. In general,520

participants were more successful in taking control back safely in subsequent trials as opposed to521

their first trial. In fact, those who experienced the take control scenario were more vigilant in their522

subsequent experiments, even in the give control scenario. This points to the idea that knowledge523

about CAVs is not sufficient and that consumers need to have the opportunity to experience being524

driven by CAV and taught how to take back control safely. This can be done by providing pilot525

studies using virtual reality or test CAVs.526
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