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Introduction

Opportunities

o New large scale ubiquitous multidimensional travel data sources
(a.k.a. Big Data)
Increased size and complexity
Representative of the population behaviour
Contain rich latent information
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Introduction

Challenges

e High fidelity data (images, videos, GPS etc.) contain useful
information that may not be easily modelled the traditional way
@ Necessitates exploring new “data-driven” modelling techniques

Flexible in representing the underlying heterogeneities in rich datasets
Improved estimation methods
Useful inference and interpretation
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Introduction

Generative Approach

@ Constructing the model of underlying distribution of the data
Using semi-supervised learning
Generate new data
With similar stochastic variations as the population
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Generative Approach

Basic notion
@ Interested in describing the generation of the data by some unknown
stochastic process
@ Describe in probabilistic terms, how a set of latent/hidden variables
could have generated the data by representing the underlying
distribution )
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Generative Bi-Partite Framework

Observed dataset
o x=xp.5x €RP

XD = (X17 ot XDcont’ XDcont+1’ ot XDcont+Dcat)

continuous discrete
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Generative Bi-Partite Framework

Observed dataset
o x=xp.5x €RP

XD = (Xl’ ot XDcont’ XDcont+17 ot XDcont+Dcat)

continuous discrete

Latent/hidden variables
es=gs.€{0,1}
@ Set of binary hidden random variables
@ Independent and identically distributed (i.i.d.)
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Generative Bi-Partite Framework

Latent variables
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Observed variables
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Model Structure

Joint distribution
@ p(x,s) over the set of observed x = x1.x € R? and binary hidden
random s = 5.5 € {0,1}
o (Restricted) Boltzmann probability distribution

e—E(xs)

p(x,s) = m (1)

X,S
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Model Structure




Model Structure

Boltzmann Energy Function
@ p(x,s) as RBM with:

E(x,s)=—x'Ws—b'x—c's (2)

o W c RK*J is the weight matrix, connecting s = (s, s, ..., 5;) and
X = (Xlax2a "7XK)

@ b and c are the parameters for the visible and hidden layer
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Model Structure

Observed variables (discrete)

® For xp.,, = (XDeaty + -+ XDear,, ) With xp,,,, = L i.e. k alternative for
variable xp_,, is chosen:
efk(S;e)

P(XDeo, = 1) = T, e Gh
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Model Structure

Observed variables (continuous)

® xp,,,, is drawn from a Gaussian N (W, X?)
@ To accommodate positive values only, stepped sigmoidal is used:
o0

Za(s — ) =In(1+¢€°)

i=1
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Model Structure

Latent/Hidden variables

@ With prior p(s), we can quantify how x is related to s via likelihood
function p(x|s)

@ Posterier distribution:

p(s|x) = T x p(x[s)p(s)

ﬁxle‘:es '?S?ty I mes

Farooq, 2020 (LITrans, RU) CMC Seminar Series July 21, 2020 17 /44




Model Estimation

Estimation problem

@ Obtaining the posterior belief p(s|x)
arg maxy p(x) (Max Likelihood of data)

o p(x) = / p(xls)p(s)ds
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Model Estimation

Estimation algorithm
e MCMC algorithms could be a solution
@ High computational cost

@ Posterior approximation may be difficult with large datasets and
complex distributions
v
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Model Estimation

Variational Bayesian Inference

@ There exists a tractable distribution g(s) that approximates the exact
posterior p(s|x)

@ We search over the set of distributions that minimizes the
Kullback-Leibler (KL) divergence objective function:

argmin Dy [q(s)l|p(s[x)]

p(s|x)

a(s) % G)
Diclq(s)llp(s|x)] =0 <= q(s) = p(s|x)
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Model Estimation

Variational Bayesian Inference

@ In our case:

(Orala(@)p(eh) = - [ ate)in 2

@ Where:
J J
a(s) = [Ja(s) = [[ p(silx), s={s1.%,...,5,}
j=1 j=1

@ Product of Expert Model (PoE), where each expert has tractable
closed form solution g(s;) = (1 + e~ "*—¢)~1.
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Model Estimation

Variational Bayesian Inference
e From Eq 3, using change-of-measure technique, Dy [q(s)||p(s|x)]:

_ / o(s)In g(s)ds — / )0 el e - L ) / o(s)ds
= —F +Inp(x)
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Model Estimation

Variational Bayesian Inference
@ F is the variational free energy and:
arg min Dy [q(s)||p(s|x)] = arg max F

o Variational free energy objective is the lower bound approximation to
log-likelihood of data as In p(x) > F
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Learning Algorithm

Learning q(s) using F
vq(s;@)F = vq(s;G) In Z p(x, S; 9) (4)
Zs e—E(x,s;O)

Vatait) 1N 55 et )
X,S

Voo (In Do e 5% —in 3" 5050 ) (5)
s X,S
utility U entropy H

Univeraity LITrans
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Learning Algorithm

Learning q(s) using F

q(s) == maxF <—
q(s)

Vq(s:0)F = 0, for any 0" € arg maxIn p(x; 0%)
xeD
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Learning Algorithm

Learning q(s) using F

Using stochastic gradient descent

1
O « Op_1 — A—nqu(s;Q) —Fa. VA, €D, 7r=1,..T
T A
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Learning Algorithm

Input : RBM data sample D = {x,...,X,}, batch sample 4; C D,i = 1, ...,d, learning rate 7,
iteration steps 7'
Output: gradient approximation § = (W, c, b).
init: 6 =0, 7=1;
forall A, € D,7=1,..,T do
forall (x,,) € A, do
for t =1 to N do
C'D;: iterate over Gibbs chain
positive phase
x0 « x,
s0~ Hf:l p(s]'\x"')
negative phase
X~ T pails?)
st~ TI, (s )
end
end
% Variational free energy term
Vs (—F)a, = ((x's) — (xs%))
% parameter update step
for 6 € 6 do
Ory1 < 07 =V y(s50) (= F)a.s
end
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Inference Using RBM

Simple Example
@ Two observed variables [x, y] connected by a single hidden unit s;

@ Boltzmann Energy:
E(x,y,5) = = 2og XWajsj — D25 yWajsj — bix = 3. ¢jsj — bay
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Inference Using RBM

Simple Example
Then for P(y|x) il
o en 1or yiX :ﬁ
Zy/ e ( ’y)

Fixy) = —In 3 e Etxrs)
5€{0,1}

= —bix — doy — In(1 + e Wi YWLi=q)
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Inference Using RBM

Simple Example

e Suppose y = {y!, y?, y3}

F(Xlay%) = _(blxl —+ d21 . (}/]:_l — 1) + d22 . (y]? _ O)
+ dg : (YE =0)+In(1+ e—XIWI,J'_ylWLj—CJ')>

= - (b1X1 + d} 4+ In(1 4+ e71Min Wl,j—Cj))

-

single correction term
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Inference Using RBM

Simple Example

@ Suppose that weights to hidden connections are zero,
Wy=W, = ¢ = 0, then

Fa,vd) = — (b + 0} +In(1 + %)) = — (b + )

MNL utility
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Montreal GPS Dataset

@ 2016 MTL Trajet GPS data from the Greater Montréal Region
@ Open dataset with 293,330 trip observations
@ Variables considered:

Mode choice

Trip purpose

Trip distance

Origin/destination point

Departure/arrival time
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Montreal GPS Dataset
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Benchmarking with Supervised NN
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Benchmarking with Supervised NN
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Benchmarking with Supervised NN
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Mode Choice Elasticity to Distance
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Forecasting

Distribution of trips by mode choice Distribution of trips by trip purpose
0.6 - data
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Forecasting

distribution
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Concluding Remarks

@ RBM based generative model for discrete-continuous travel behaviour
data
VBI based estimation process for retrieving the joint distribution
Generation of conditional probabilities and economic analysis
@ Performed better in forecasting, when compared to supervised
feed-forward neural networks
With the similar dimensionality/same number of latent variables used

v
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Concluding Remarks

@ Increase in latent variables, may cause overfitting
Regularization techniques can be used

Application on other high fidelity datasets

Explore the use in population synthesis

Explore the use of other generative models

Variational Autoencorders (VAE)
Generative Adversarial Networks (GANs)
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Thanks for listening! )

Paper: https://arxiv.org/abs/1901.06415
Source Code: https://github.com/LiTrans/ML-MDC
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